PADME Train Wiki
Train Selection
Search
Trains
LEUKO_TEST_TRAIN
421
Main.py
Code fragments of Main.py
# evaluate knn imputation and random forest for the horse colic dataset
#import math
import numpy as np
import pandas as pd
#import neurolab as nl
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from missingpy import MissForest
from minio import Minio
import os
def getDataframe(): #ENV Variables
minio_address = str(os.environ['MINIO_ADDRESS'])
minio_port = str(os.environ['MINIO_PORT'])
minio_access_key = str(os.environ['MINIO_ACCESS'])
minio_secret_key = str(os.environ['MINIO_SECRET'])
bucket_name = str(os.environ['MINIO_BUCKET_NAME'])
object_name = str(os.environ['MINIO_OBJECT_NAME'])
minioClient = Minio( '{0}:{1}'.format(minio_address, minio_port), access_key=minio_access_key, secret_key=minio_secret_key, secure=False, )
res = minioClient.get_object(bucket_name, object_name)
print("Data loaded")
df = pd.read_csv(res)
return df
df = getDataframe()
print("Data loades from MinIO")
match = lambda a, b: [ b.index(x)+1 if x in b else None for x in a ]
record_ids = df["record_id"][pd.isna(df["diagnosed_leuk"])==False]
matched_record_ids = list(match(list(df["record_id"]),list(record_ids)))
matched_record_ids_none = []
number = 0
for x in matched_record_ids:
if x is not None:
matched_record_ids_none.append(number)
number = number + 1
df_labels = df.iloc[matched_record_ids_none,:]
df_only_labels = df_labels[df_labels["redcap_repeat_instrument"].isna()]
rri_list = df_labels["redcap_repeat_instrument"] == "examination_data_use_new_sheet_for_every_visit"
exam_numbers = []
number = 0
for x in rri_list:
if x is True:
exam_numbers.append(number)
number = number + 1
symptom_df = df_labels.iloc[exam_numbers,:]
matched_record_ids_labels = match(list(df_only_labels["record_id"]),list(symptom_df["record_id"]))
matched_record_ids_none_2 = []
number = 0
for x in matched_record_ids_labels:
if x is not None:
matched_record_ids_none_2.append(number)
number = number + 1
labels = list(df_only_labels.iloc[matched_record_ids_none_2,:]["diagnosed_leuk"])
rri_list_2 = symptom_df["redcap_repeat_instance"] == 1
exam_numbers = []
number = 0
for x in rri_list_2:
if x is True:
exam_numbers.append(number)
number = number + 1
symptom_first_visit = symptom_df.iloc[exam_numbers,:]
first_visit_col_number = (symptom_first_visit.columns == "visit1_fir")
number = 0
for x in first_visit_col_number:
if x == True:
exam_number = number
number = number + 1
only_symptoms = symptom_first_visit.iloc[:,exam_number:]
columns_without_na = []
for coloums in range(0,len(only_symptoms.iloc[0,:])):
if not(all(only_symptoms.iloc[:,coloums].isna())):
columns_without_na.append(coloums)
only_symptoms_with_out_na = only_symptoms.iloc[:,columns_without_na]
columns_without_var = []
for coloums in range(0,len(only_symptoms_with_out_na.iloc[0,:])):
if (len(set(only_symptoms_with_out_na.iloc[:,coloums])) != 1):
columns_without_var.append(coloums)
only_symptoms_final = only_symptoms_with_out_na.iloc[:, columns_without_var]
only_symptoms_final["visit1_fir"][only_symptoms_final["visit1_fir"].isna()] = -1
only_symptoms_final["cog"][only_symptoms_final["cog"].isna()] = 0
try:
only_symptoms_final["apha"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["apha"].isna())] = -1
only_symptoms_final["apha"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["apha"].isna()))] = 0
only_symptoms_final["apha"][only_symptoms_final["apha"].isna()] = 0
only_symptoms_final["cogloss"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["cogloss"].isna())] = -1
only_symptoms_final["cogloss"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["cogloss"].isna()))] = 0
only_symptoms_final["cogloss"][only_symptoms_final["cogloss"].isna()] = 0
only_symptoms_final["eap"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["eap"].isna())] = -1
only_symptoms_final["eap"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["eap"].isna()))] = 0
only_symptoms_final["eap"][only_symptoms_final["eap"].isna()] = 0
only_symptoms_final["loc"][(only_symptoms_final["cogloss"] == 1) == (only_symptoms_final["eap"].isna())] = -1
only_symptoms_final["loc"][(list(only_symptoms_final["cogloss"] == 2)) and list((only_symptoms_final["eap"].isna()))] = 0
only_symptoms_final["loc"][only_symptoms_final["loc"].isna()] = 0
only_symptoms_final["ic"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["ic"].isna())] = -1
only_symptoms_final["ic"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["ic"].isna()))] = 0
only_symptoms_final["ic"][only_symptoms_final["ic"].isna()] = 0
only_symptoms_final["ii"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["ii"].isna())] = -1
only_symptoms_final["ii"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["ii"].isna()))] = 0
only_symptoms_final["ii"][only_symptoms_final["ii"].isna()] = 0
only_symptoms_final["fati"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["fati"].isna())] = -1
only_symptoms_final["fati"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["fati"].isna()))] = 0
only_symptoms_final["fati"][only_symptoms_final["fati"].isna()] = 0
only_symptoms_final["apr"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["apr"].isna())] = -1
only_symptoms_final["apr"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["apr"].isna()))] = 0
only_symptoms_final["apr"][only_symptoms_final["apr"].isna()] = 0
only_symptoms_final["red_consciousness_confus"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["red_consciousness_confus"].isna())] = -1
only_symptoms_final["red_consciousness_confus"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["red_consciousness_confus"].isna()))] = 0
only_symptoms_final["red_consciousness_confus"][only_symptoms_final["red_consciousness_confus"].isna()] = 0
only_symptoms_final["agnosia"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["agnosia"].isna())] = -1
only_symptoms_final["agnosia"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["agnosia"].isna()))] = 0
only_symptoms_final["agnosia"][only_symptoms_final["agnosia"].isna()] = 0
only_symptoms_final["psychosis"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["psychosis"].isna())] = -1
only_symptoms_final["psychosis"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["psychosis"].isna()))] = 0
only_symptoms_final["psychosis"][only_symptoms_final["psychosis"].isna()] = 0
only_symptoms_final["hallucinations_delusions"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["hallucinations_delusions"].isna())] = -1
only_symptoms_final["hallucinations_delusions"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["hallucinations_delusions"].isna()))] = 0
only_symptoms_final["hallucinations_delusions"][only_symptoms_final["hallucinations_delusions"].isna()] = 0
only_symptoms_final["sleep_disturbance"][only_symptoms_final["sleep_disturbance"].isna()] = -1
only_symptoms_final["mab"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["mab"].isna())] = -1
only_symptoms_final["mab"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["mab"].isna()))] = 0
only_symptoms_final["mab"][only_symptoms_final["mab"].isna()] = 0
only_symptoms_final["adh"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["adh"].isna())] = -1
only_symptoms_final["adh"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["adh"].isna()))] = 0
only_symptoms_final["adh"][only_symptoms_final["adh"].isna()] = 0
# only_symptoms_final["dbfb"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["dbfb"].isna())] = -1
# only_symptoms_final["dbfb"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["dbfb"].isna()))] = 0
# only_symptoms_final["dbfb"][only_symptoms_final["dbfb"].isna()] = 0
only_symptoms_final["depr"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["depr"].isna())] = -1
only_symptoms_final["depr"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["depr"].isna()))] = 0
only_symptoms_final["depr"][only_symptoms_final["depr"].isna()] = 0
only_symptoms_final["ma"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["ma"].isna())] = -1
only_symptoms_final["ma"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["ma"].isna()))] = 0
only_symptoms_final["ma"][only_symptoms_final["ma"].isna()] = 0
only_symptoms_final["personality"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["personality"].isna())] = -1
only_symptoms_final["personality"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["personality"].isna()))] = 0
only_symptoms_final["personality"][only_symptoms_final["personality"].isna()] = 0
only_symptoms_final["s_e"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["s_e"].isna())] = -1
only_symptoms_final["s_e"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["s_e"].isna()))] = 0
only_symptoms_final["s_e"][only_symptoms_final["s_e"].isna()] = 0
# only_symptoms_final["fs"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["fs"].isna())] = -1
# only_symptoms_final["fs"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["fs"].isna()))] = 0
# only_symptoms_final["fs"][only_symptoms_final["fs"].isna()] = 0
only_symptoms_final["fs___2"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["fs___2"].isna())] = -1
only_symptoms_final["fs___2"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["fs___2"].isna()))] = 0
only_symptoms_final["fs___2"][only_symptoms_final["fs___2"].isna()] = 0
# only_symptoms_final["gs"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["gs"].isna())] = -1
# only_symptoms_final["gs"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["gs"].isna()))] = 0
# only_symptoms_final["gs"][only_symptoms_final["gs"].isna()] = 0
only_symptoms_final["emd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["emd"].isna())] = -1
only_symptoms_final["emd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["emd"].isna()))] = 0
only_symptoms_final["emd"][only_symptoms_final["emd"].isna()] = 0
only_symptoms_final["diplopia"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["diplopia"].isna())] = -1
only_symptoms_final["diplopia"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["diplopia"].isna()))] = 0
only_symptoms_final["diplopia"][only_symptoms_final["diplopia"].isna()] = 0
only_symptoms_final["nys"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["nys"].isna())] = -1
only_symptoms_final["nys"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["nys"].isna()))] = 0
only_symptoms_final["nys"][only_symptoms_final["nys"].isna()] = 0
only_symptoms_final["ino"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["ino"].isna())] = -1
only_symptoms_final["ino"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["ino"].isna()))] = 0
only_symptoms_final["ino"][only_symptoms_final["ino"].isna()] = 0
only_symptoms_final["oculomot"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["oculomot"].isna())] = -1
only_symptoms_final["oculomot"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["oculomot"].isna()))] = 0
only_symptoms_final["oculomot"][only_symptoms_final["oculomot"].isna()] = 0
only_symptoms_final["fourth_cranial_nerve_palsy"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["fourth_cranial_nerve_palsy"].isna())] = -1
only_symptoms_final["fourth_cranial_nerve_palsy"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["fourth_cranial_nerve_palsy"].isna()))] = 0
only_symptoms_final["fourth_cranial_nerve_palsy"][only_symptoms_final["fourth_cranial_nerve_palsy"].isna()] = 0
only_symptoms_final["abducens"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["abducens"].isna())] = -1
only_symptoms_final["abducens"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["abducens"].isna()))] = 0
only_symptoms_final["abducens"][only_symptoms_final["ino"].isna()] = 0
only_symptoms_final["thy"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["thy"].isna())] = -1
only_symptoms_final["thy"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["thy"].isna()))] = 0
only_symptoms_final["thy"][only_symptoms_final["thy"].isna()] = 0
only_symptoms_final["fp"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["fp"].isna())] = -1
only_symptoms_final["fp"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["fp"].isna()))] = 0
only_symptoms_final["fp"][only_symptoms_final["fp"].isna()] = 0
only_symptoms_final["od"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["od"].isna())] = -1
only_symptoms_final["od"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["od"].isna()))] = 0
only_symptoms_final["od"][only_symptoms_final["od"].isna()] = 0
only_symptoms_final["hi"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["hi"].isna())] = -1
only_symptoms_final["hi"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["hi"].isna()))] = 0
only_symptoms_final["hi"][only_symptoms_final["hi"].isna()] = 0
only_symptoms_final["hp"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["hp"].isna())] = -1
only_symptoms_final["hp"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["hp"].isna()))] = 0
only_symptoms_final["hp"][only_symptoms_final["hp"].isna()] = 0
only_symptoms_final["trig_neur"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["trig_neur"].isna())] = -1
only_symptoms_final["trig_neur"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["trig_neur"].isna()))] = 0
only_symptoms_final["trig_neur"][only_symptoms_final["trig_neur"].isna()] = 0
only_symptoms_final["spsw"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["spsw"].isna())] = -1
only_symptoms_final["spsw"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["spsw"].isna()))] = 0
only_symptoms_final["spsw"][only_symptoms_final["spsw"].isna()] = 0
only_symptoms_final["dya"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["dya"].isna())] = -1
only_symptoms_final["dya"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["dya"].isna()))] = 0
only_symptoms_final["dya"][only_symptoms_final["dya"].isna()] = 0
only_symptoms_final["scs"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["scs"].isna())] = -1
only_symptoms_final["scs"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["scs"].isna()))] = 0
only_symptoms_final["scs"][only_symptoms_final["scs"].isna()] = 0
only_symptoms_final["dysphon"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["dysphon"].isna())] = -1
only_symptoms_final["dysphon"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["dysphon"].isna()))] = 0
only_symptoms_final["dysphon"][only_symptoms_final["dysphon"].isna()] = 0
only_symptoms_final["slurred_speech"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["slurred_speech"].isna())] = -1
only_symptoms_final["slurred_speech"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["slurred_speech"].isna()))] = 0
only_symptoms_final["slurred_speech"][only_symptoms_final["slurred_speech"].isna()] = 0
only_symptoms_final["bulbar_palsy"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["bulbar_palsy"].isna())] = -1
only_symptoms_final["bulbar_palsy"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["bulbar_palsy"].isna()))] = 0
only_symptoms_final["bulbar_palsy"][only_symptoms_final["bulbar_palsy"].isna()] = 0
only_symptoms_final["pseudobulbar_palsy"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["pseudobulbar_palsy"].isna())] = -1
only_symptoms_final["pseudobulbar_palsy"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["pseudobulbar_palsy"].isna()))] = 0
only_symptoms_final["pseudobulbar_palsy"][only_symptoms_final["pseudobulbar_palsy"].isna()] = 0
only_symptoms_final["dyp"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["dyp"].isna())] = -1
only_symptoms_final["dyp"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["dyp"].isna()))] = 0
only_symptoms_final["dyp"][only_symptoms_final["dyp"].isna()] = 0
only_symptoms_final["emp"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["emp"].isna())] = -1
only_symptoms_final["emp"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["emp"].isna()))] = 0
only_symptoms_final["emp"][only_symptoms_final["emp"].isna()] = 0
only_symptoms_final["var"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["var"].isna())] = -1
only_symptoms_final["var"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["var"].isna()))] = 0
only_symptoms_final["var"][only_symptoms_final["var"].isna()] = 0
only_symptoms_final["cvd"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["cvd"].isna())] = -1
only_symptoms_final["cvd"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["cvd"].isna()))] = 0
only_symptoms_final["cvd"][only_symptoms_final["cvd"].isna()] = 0
only_symptoms_final["cvi"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["cvi"].isna())] = -1
only_symptoms_final["cvi"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["cvi"].isna()))] = 0
only_symptoms_final["cvi"][only_symptoms_final["cvi"].isna()] = 0
# only_symptoms_final["visual_field_defect"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["visual_field_defect"].isna())] = -1
# only_symptoms_final["visual_field_defect"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["visual_field_defect"].isna()))] = 0
# only_symptoms_final["visual_field_defect"][only_symptoms_final["visual_field_defect"].isna()] = 0
only_symptoms_final["sim"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["sim"].isna())] = -1
only_symptoms_final["sim"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["sim"].isna()))] = 0
only_symptoms_final["sim"][only_symptoms_final["sim"].isna()] = 0
only_symptoms_final["sper"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["sper"].isna())] = -1
only_symptoms_final["sper"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["sper"].isna()))] = 0
only_symptoms_final["sper"][only_symptoms_final["sper"].isna()] = 0
only_symptoms_final["vs"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["vs"].isna())] = -1
only_symptoms_final["vs"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["vs"].isna()))] = 0
only_symptoms_final["vs"][only_symptoms_final["vs"].isna()] = 0
# only_symptoms_final["sensory_impa"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["sensory_impa"].isna())] = -1
# only_symptoms_final["sensory_impa"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["sensory_impa"].isna()))] = 0
# only_symptoms_final["sensory_impa"][only_symptoms_final["sensory_impa"].isna()] = 0
only_symptoms_final["cersy"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["cersy"].isna())] = -1
only_symptoms_final["cersy"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["cersy"].isna()))] = 0
only_symptoms_final["cersy"][only_symptoms_final["cersy"].isna()] = 0
only_symptoms_final["trem"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["trem"].isna())] = -1
only_symptoms_final["trem"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["trem"].isna()))] = 0
only_symptoms_final["trem"][only_symptoms_final["trem"].isna()] = 0
# only_symptoms_final["hye"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["hye"].isna())] = -1
# only_symptoms_final["hye"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["hye"].isna()))] = 0
# only_symptoms_final["hye"][only_symptoms_final["hye"].isna()] = 0
only_symptoms_final["hyo"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["hyo"].isna())] = -1
only_symptoms_final["hyo"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["hyo"].isna()))] = 0
only_symptoms_final["hyo"][only_symptoms_final["hyo"].isna()] = 0
only_symptoms_final["dyt"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["dyt"].isna())] = -1
only_symptoms_final["dyt"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["dyt"].isna()))] = 0
only_symptoms_final["dyt"][only_symptoms_final["dyt"].isna()] = 0
# only_symptoms_final["dyskin"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["dyskin"].isna())] = -1
# only_symptoms_final["dyskin"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["dyskin"].isna()))] = 0
# only_symptoms_final["dyskin"][only_symptoms_final["dyskin"].isna()] = 0
only_symptoms_final["fmd"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["fmd"].isna())] = -1
only_symptoms_final["fmd"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["fmd"].isna()))] = 0
only_symptoms_final["fmd"][only_symptoms_final["fmd"].isna()] = 0
only_symptoms_final["ataxia"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["ataxia"].isna())] = -1
only_symptoms_final["ataxia"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["ataxia"].isna()))] = 0
only_symptoms_final["ataxia"][only_symptoms_final["ataxia"].isna()] = 0
only_symptoms_final["bd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["bd"].isna())] = -1
only_symptoms_final["bd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["bd"].isna()))] = 0
only_symptoms_final["bd"][only_symptoms_final["bd"].isna()] = 0
only_symptoms_final["sexd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["sexd"].isna())] = -1
only_symptoms_final["sexd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["sexd"].isna()))] = 0
only_symptoms_final["sexd"][only_symptoms_final["sexd"].isna()] = 0
only_symptoms_final["edy"][(only_symptoms_final["sexd"] == 1) == (only_symptoms_final["edy"].isna())] = -1
only_symptoms_final["edy"][(list(only_symptoms_final["sexd"] == 2)) and list((only_symptoms_final["edy"].isna()))] = 0
only_symptoms_final["edy"][only_symptoms_final["edy"].isna()] = 0
only_symptoms_final["ll"][(only_symptoms_final["sexd"] == 1) == (only_symptoms_final["ll"].isna())] = -1
only_symptoms_final["ll"][(list(only_symptoms_final["sexd"] == 2)) and list((only_symptoms_final["ll"].isna()))] = 0
only_symptoms_final["ll"][only_symptoms_final["ll"].isna()] = 0
only_symptoms_final["bi"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["bi"].isna())] = -1
only_symptoms_final["bi"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["bi"].isna()))] = 0
only_symptoms_final["bi"][only_symptoms_final["bi"].isna()] = 0
only_symptoms_final["prs"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["prs"].isna())] = -1
only_symptoms_final["prs"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["prs"].isna()))] = 0
only_symptoms_final["prs"][only_symptoms_final["prs"].isna()] = 0
only_symptoms_final["tprs"][(only_symptoms_final["prs"] == 1) == (only_symptoms_final["tprs"].isna())] = -1
only_symptoms_final["tprs"][(list(only_symptoms_final["prs"] == 2)) and list((only_symptoms_final["tprs"].isna()))] = 0
only_symptoms_final["tprs"][only_symptoms_final["tprs"].isna()] = 0
only_symptoms_final["severity_of_paresis"][(only_symptoms_final["tprs"] == 1) == (only_symptoms_final["severity_of_paresis"].isna())] = -1
only_symptoms_final["severity_of_paresis"][(list(only_symptoms_final["tprs"] == 2)) and list((only_symptoms_final["severity_of_paresis"].isna()))] = 0
only_symptoms_final["severity_of_paresis"][only_symptoms_final["severity_of_paresis"].isna()] = 0
only_symptoms_final["psi"][(only_symptoms_final["prs"] == 1) == (only_symptoms_final["psi"].isna())] = -1
only_symptoms_final["psi"][(list(only_symptoms_final["prs"] == 2)) and list((only_symptoms_final["psi"].isna()))] = 0
only_symptoms_final["psi"][only_symptoms_final["psi"].isna()] = 0
only_symptoms_final["spas"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["spas"].isna())] = -1
only_symptoms_final["spas"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["spas"].isna()))] = 0
only_symptoms_final["spas"][only_symptoms_final["spas"].isna()] = 0
only_symptoms_final["tspas"][(only_symptoms_final["spas"] == 1) == (only_symptoms_final["tspas"].isna())] = -1
only_symptoms_final["tspas"][(list(only_symptoms_final["spas"] == 2)) and list((only_symptoms_final["tspas"].isna()))] = 0
only_symptoms_final["tspas"][only_symptoms_final["tspas"].isna()] = 0
# only_symptoms_final["pai"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["pai"].isna())] = -1
# only_symptoms_final["pai"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["pai"].isna()))] = 0
# only_symptoms_final["pai"][only_symptoms_final["pai"].isna()] = 0
#
# only_symptoms_final["npa"][(only_symptoms_final["pai"] == 1) == (only_symptoms_final["npa"].isna())] = -1
# only_symptoms_final["npa"][(list(only_symptoms_final["pai"] == 2)) and list((only_symptoms_final["npa"].isna()))] = 0
# only_symptoms_final["npa"][only_symptoms_final["npa"].isna()] = 0
#
# only_symptoms_final["headache"][(only_symptoms_final["pai"] == 1) == (only_symptoms_final["headache"].isna())] = -1
# only_symptoms_final["headache"][(list(only_symptoms_final["pai"] == 2)) and list((only_symptoms_final["headache"].isna()))] = 0
# only_symptoms_final["headache"][only_symptoms_final["headache"].isna()] = 0
only_symptoms_final["vertigo_dizziness"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["vertigo_dizziness"].isna())] = -1
only_symptoms_final["vertigo_dizziness"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["vertigo_dizziness"].isna()))] = 0
only_symptoms_final["vertigo_dizziness"][only_symptoms_final["vertigo_dizziness"].isna()] = 0
only_symptoms_final["type_of_dizziness"][(only_symptoms_final["vertigo_dizziness"] == 1) == (only_symptoms_final["type_of_dizziness"].isna())] = -1
only_symptoms_final["type_of_dizziness"][(list(only_symptoms_final["vertigo_dizziness"] == 2)) and list((only_symptoms_final["type_of_dizziness"].isna()))] = 0
only_symptoms_final["type_of_dizziness"][only_symptoms_final["type_of_dizziness"].isna()] = 0
only_symptoms_final["gdis"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["gdis"].isna())] = -1
only_symptoms_final["gdis"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["gdis"].isna()))] = 0
only_symptoms_final["gdis"][only_symptoms_final["gdis"].isna()] = 0
# only_symptoms_final["gait_imbalance"][(only_symptoms_final["gdis"] == 1) == (only_symptoms_final["gait_imbalance"].isna())] = -1
# only_symptoms_final["gait_imbalance"][(list(only_symptoms_final["gdis"] == 2)) and list((only_symptoms_final["gait_imbalance"].isna()))] = 0
# only_symptoms_final["gait_imbalance"][only_symptoms_final["gait_imbalance"].isna()] = 0
only_symptoms_final["exgdis"][(only_symptoms_final["gdis"] == 1) == (only_symptoms_final["exgdis"].isna())] = -1
only_symptoms_final["exgdis"][(list(only_symptoms_final["gdis"] == 2)) and list((only_symptoms_final["exgdis"].isna()))] = 0
only_symptoms_final["exgdis"][only_symptoms_final["exgdis"].isna()] = 0
only_symptoms_final["nnsym"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["nnsym"].isna())] = -1
only_symptoms_final["nnsym"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["nnsym"].isna()))] = 0
only_symptoms_final["nnsym"][only_symptoms_final["nnsym"].isna()] = 0
only_symptoms_final["addd"][(only_symptoms_final["nnsym"] == 1) == (only_symptoms_final["addd"].isna())] = -1
only_symptoms_final["addd"][(list(only_symptoms_final["nnsym"] == 2)) and list((only_symptoms_final["addd"].isna()))] = 0
only_symptoms_final["addd"][only_symptoms_final["addd"].isna()] = 0
only_symptoms_final["hypogon"][(only_symptoms_final["nnsym"] == 1) == (only_symptoms_final["hypogon"].isna())] = -1
only_symptoms_final["hypogon"][(list(only_symptoms_final["nnsym"] == 2)) and list((only_symptoms_final["hypogon"].isna()))] = 0
only_symptoms_final["hypogon"][only_symptoms_final["hypogon"].isna()] = 0
only_symptoms_final["pd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["pd"].isna())] = -1
only_symptoms_final["pd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["pd"].isna()))] = 0
only_symptoms_final["pd"][only_symptoms_final["pd"].isna()] = 0
except: print("Block entry doesnt work")
only_symptoms_final.drop(columns="visit1_fir",axis=1)
only_symptoms_final.drop(columns="examination_data_use_new_sheet_for_every_visit_complete",axis=1)
only_symptoms_final.insert(loc=0, column='label', value=labels)
print("Data preparation is complete")
#def quarter(x):
# return math.ceil(x*4)/4
""" def ANN(x,y,xt,yt): size = len(x) ########################################## #x = sklearn.preprocessing.normalize(x, norm="l1") #xt = sklearn.preprocessing.normalize([xt], norm="l1") #scaler_x = MinMaxScaler(feature_range=(0, 1)) #x = pd. DataFrame(scaler_x.fit_transform(x)) #xt = pd. DataFrame(scaler_x.fit_transform([xt])) #scaler_y = MinMaxScaler(feature_range=(0, 1)) #y = pd. DataFrame(scaler_y.fit_transform([y])) #yt = pd. DataFrame(scaler_y.fit_transform([[yt]])) maxmin=[] for i in range(0,100): maxmin.append([0, 1]) ########################################## inp = x#.reshape(size,1) tar = y.reshape(size,1) # Create network with 2 layers and random initialized net = nl.net.newff(maxmin,[20, 1]) # Train network error = net.train(inp, tar, epochs=5000, show=100, goal=0.01) # Simulate network out = net.sim(inp) # Plot result #pl.subplot(211) #pl.plot(error) #pl.xlabel('Epoch number') #pl.ylabel('error (default SSE)') #x2 = xt#np.linspace(-6.0,6.0,150) ytt = net.sim([xt]) return ytt ytt=np.round(ytt) yttn=[] for item in ytt: if item[0]==0: yttn.append(0) else: yttn.append(1) return len([a for a in np.isclose(yttn , yt) if(a)]) / len(yttn) * 100 """
imputer = MissForest(missing_values=-1)
data_real = only_symptoms_final
#del data_real[data_real.columns[0]]
data_imputed = imputer.fit_transform(data_real)
data = pd.DataFrame(data=data_imputed, columns=data_real.columns.values.tolist())
print("Data imputation is complete")
#data = pd.read_csv('./output.csv')
# normalize dataset with MinMaxScaler
#scaler = MinMaxScaler(feature_range=(-1, 1))
#data = pd.DataFrame(scaler.fit_transform(realData))
linear_result=[]
rbf_result=[]
poly_result=[]
sig_result=[]
for testIndex in range( len(data)): #data_temp=data #train=data.drop([testIndex]) #test=data.iloc[testIndex]
data_x = data.iloc[:, 1:]
y = data.iloc[:, 0]
#y_class1=y
""""" y_class1=y.replace(2,1) y_class1=y_class1.replace(103,0) y_class1=y_class1.replace(7,0) y_class1=y_class1.replace(84,0) y_class2=y.replace(2,0) y_class2=y_class2.replace(103,1) y_class2=y_class2.replace(7,0) y_class2=y_class2.replace(84,0) """
# 2, 84 and 103 realted to LD
y_class=y.replace(2,0)
y_class=y_class.replace(103,0)
y_class=y_class.replace(1,0)
y_class=y_class.replace(84,1)
# 7 is related to MS
y_class=y_class.replace(7,0)
y_class=y_class.replace(29,0)
y_class=y_class.replace(60,0)
""""" y_class4=y.replace(2,0) y_class4=y_class4.replace(103,0) y_class4=y_class4.replace(7,0) y_class4=y_class4.replace(84,1) """
sc = StandardScaler()
x_scaled =pd.DataFrame( sc.fit_transform(data_x.values))
xt_scaled=x_scaled.iloc[testIndex]
x_scaled=x_scaled.drop([testIndex])
#y_class1=y_class1.drop([testIndex])
#y_class2=y_class2.drop([testIndex])
y_class=y_class.drop([testIndex])
#y_class4=y_class4.drop([testIndex])
yt=data.iloc[testIndex].iloc[ 1]
#y_class1= np.ravel(y_class1)
#y_class2= np.ravel(y_class2)
y_class= np.ravel(y_class)
#y_class4= np.ravel(y_class4)
#svm_class1 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
#svm_class2 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
svm_class_sigmoid = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_linear = SVC(kernel='linear', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_poly = SVC(kernel='poly', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_rbf= SVC(kernel='rbf', C=1, decision_function_shape='ovo', random_state=0,probability=True)
#svm_class4 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
#svm_class1.fit(x_scaled, y_class1)
#svm_class2.fit(x_scaled, y_class2)
svm_class_sigmoid.fit(x_scaled, y_class)
svm_class_linear.fit(x_scaled, y_class)
svm_class_poly.fit(x_scaled, y_class)
svm_class_rbf.fit(x_scaled, y_class)
#svm_class4.fit(x_scaled, y_class4)
#y_pre_class1 = svm_class1.predict([xt_scaled])
#y_pre_class2 = svm_class2.predict([xt_scaled])
y_pre_class_sigmoid = svm_class_sigmoid.predict([xt_scaled])
y_pre_class_linear = svm_class_linear.predict([xt_scaled])
y_pre_class_poly = svm_class_poly.predict([xt_scaled])
y_pre_class_rbf = svm_class_rbf.predict([xt_scaled])
#y_pre_class4 = svm_class4.predict([xt_scaled])
#linear = svm.SVC(kernel='linear', C=1, decision_function_shape='ovo').fit(x, y)
#rbf = svm.SVC(kernel='rbf', gamma=1, C=1, decision_function_shape='ovo').fit(x, y)
#poly = svm.SVC(kernel='poly', degree=3, C=1, decision_function_shape='ovo').fit(x, y)
#sig = svm.SVC(kernel='sigmoid', C=1, decision_function_shape='ovo').fit(x, y)
#linear_result.append([linear.predict([xt])[0],yt])
if y_pre_class_sigmoid[0]==1:
sig_result.append([84,yt])
else:
sig_result.append([0,yt])
if y_pre_class_linear[0]==1:
linear_result.append([84,yt])
else:
linear_result.append([0,yt])
if y_pre_class_poly[0]==1:
poly_result.append([84,yt])
else:
poly_result.append([0,yt])
if y_pre_class_rbf[0]==1:
rbf_result.append([84,yt])
else:
rbf_result.append([0,yt])
# if y_pre_class1[0]==0 and y_pre_class2[0]==1 and y_pre_class3[0]==0 and y_pre_class4[0]==0:
# SVM_result.append([103,yt])
# else:
# if y_pre_class1[0]==0 and y_pre_class2[0]==0 and y_pre_class3[0]==1 and y_pre_class4[0]==0:
# SVM_result.append([7,yt])
# else:
# if y_pre_class1[0]==0 and y_pre_class2[0]==0 and y_pre_class3[0]==0 and y_pre_class4[0]==1:
# SVM_result.append([84,yt])
# else:
# SVM_result.append([0,yt])
#poly_result.append([poly.predict([xt])[0],yt])
#sig_result.append([sig.predict([xt])[0],yt])
#Percent_SVM=0
#Percent_poly=0
#Percent_ANN=0
pd.DataFrame(linear_result).to_csv('binary_linear.csv')
pd.DataFrame(rbf_result).to_csv('binary_rbf.csv')
pd.DataFrame(poly_result).to_csv('binary_poly.csv')
pd.DataFrame(sig_result).to_csv('binary_sig.csv')
Percent_linear=0
Percent_poly=0
Percent_rbf=0
Percent_sig=0
for index in range(len(data)):
if linear_result[index][0]!=linear_result[index][1]:
Percent_linear=Percent_linear+1
if rbf_result[index][0]!=rbf_result[index][1]:
Percent_rbf=Percent_rbf+1
if poly_result[index][0]!=poly_result[index][1]:
Percent_poly=Percent_poly+1
if poly_result[index][0]!=poly_result[index][1]:
Percent_sig=Percent_sig+1
Percent_linear=Percent_linear/len(data)
Percent_poly=Percent_poly/len(data)
Percent_rbf=Percent_rbf/len(data)
Percent_sig=Percent_sig/len(data)
print(Percent_linear)
print(Percent_poly)
print(Percent_rbf)
print(Percent_sig)
print("Model is finish")
print("SUCCESS")
""""" data=pd.DataFrame( data[data.iloc[:, 1]!=84].values) linear_result=[] rbf_result=[] poly_result=[] sig_result=[] #for index in range(len(data)): # if SVM_result[index][84]==SVM_result[index][1]:Percent_SVM=Percent_SVM+1 for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] linear = svm.SVC(kernel='linear', C=1, decision_function_shape='ovo').fit(x, y) rbf = svm.SVC(kernel='rbf', gamma=1, C=1, decision_function_shape='ovo').fit(x, y) poly = svm.SVC(kernel='poly', degree=3, C=1, decision_function_shape='ovo').fit(x, y) sig = svm.SVC(kernel='sigmoid', C=1, decision_function_shape='ovo').fit(x, y) linear_result.append([linear.predict([xt])[0],yt]) rbf_result.append([rbf.predict([xt])[0],yt]) poly_result.append([poly.predict([xt])[0],yt]) sig_result.append([sig.predict([xt])[0],yt]) pd.DataFrame(linear_result).to_csv('multi_class_linear.csv') pd.DataFrame(rbf_result).to_csv('multi_class_rbf.csv') pd.DataFrame(poly_result).to_csv('multi_class_poly.csv') pd.DataFrame(sig_result).to_csv('multi_class_sig.csv') Percent_linear=Percent_SVM/len(data) data.iloc[:,1]=data.iloc[:,1].replace(2,0) data.iloc[:,1]=data.iloc[:,1].replace(103,0.25) data.iloc[:,1]=data.iloc[:,1].replace(7,0.75) data.iloc[:,1]=data.iloc[:,1].replace(84,1) scaler = MinMaxScaler(feature_range=(0, 1)) data = pd.DataFrame(scaler.fit_transform(data)) ANN_result=[] for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] pyt= quarter(ANN(x,y,xt,yt)) ANN_result.append([pyt,yt]) Percent_linear=0 Percent_poly=0 Percent_ANN=0 for index in range(len(data)): if linear_result[index][0]==linear_result[index][1]:Percent_linear=Percent_linear+1 if poly_result[index][0]==poly_result[index][1]:Percent_poly=Percent_poly+1 if ANN_result[index][0]==ANN_result[index][1]:Percent_ANN=Percent_ANN+1 Percent_linear=Percent_linear/len(data) Percent_poly=Percent_poly/len(data) Percent_ANN=Percent_ANN/len(data) #2 103 7 84 class1=data.drop(np.where(data.iloc[:,1] != 2)[0]) class2=data.drop(np.where(data.iloc[:,1] != 103)[0]) class3=data.drop(np.where(data.iloc[:,1] != 7)[0]) class4=data.drop(np.where(data.iloc[:,1] != 84)[0]) """
Graph
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
Main.py
# evaluate knn imputation and random forest for the horse colic dataset
None
#import math
import numpy as np
import pandas as pd
#import neurolab as nl
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from missingpy import MissForest
from minio import Minio
import os
def getDataframe(): #ENV Variables
minio_address = str(os.environ['MINIO_ADDRESS'])
minio_port = str(os.environ['MINIO_PORT'])
minio_access_key = str(os.environ['MINIO_ACCESS'])
minio_secret_key = str(os.environ['MINIO_SECRET'])
bucket_name = str(os.environ['MINIO_BUCKET_NAME'])
object_name = str(os.environ['MINIO_OBJECT_NAME'])
minioClient = Minio( '{0}:{1}'.format(minio_address, minio_port), access_key=minio_access_key, secret_key=minio_secret_key, secure=False, )
res = minioClient.get_object(bucket_name, object_name)
print("Data loaded")
df = pd.read_csv(res)
return df
df = getDataframe()
print("Data loades from MinIO")
match = lambda a, b: [ b.index(x)+1 if x in b else None for x in a ]
record_ids = df["record_id"][pd.isna(df["diagnosed_leuk"])==False]
matched_record_ids = list(match(list(df["record_id"]),list(record_ids)))
matched_record_ids_none = []
number = 0
for x in matched_record_ids:
if x is not None:
matched_record_ids_none.append(number)
number = number + 1
df_labels = df.iloc[matched_record_ids_none,:]
df_only_labels = df_labels[df_labels["redcap_repeat_instrument"].isna()]
rri_list = df_labels["redcap_repeat_instrument"] == "examination_data_use_new_sheet_for_every_visit"
exam_numbers = []
for x in rri_list:
if x is True:
exam_numbers.append(number)
symptom_df = df_labels.iloc[exam_numbers,:]
matched_record_ids_labels = match(list(df_only_labels["record_id"]),list(symptom_df["record_id"]))
matched_record_ids_none_2 = []
for x in matched_record_ids_labels:
matched_record_ids_none_2.append(number)
labels = list(df_only_labels.iloc[matched_record_ids_none_2,:]["diagnosed_leuk"])
rri_list_2 = symptom_df["redcap_repeat_instance"] == 1
for x in rri_list_2:
symptom_first_visit = symptom_df.iloc[exam_numbers,:]
first_visit_col_number = (symptom_first_visit.columns == "visit1_fir")
for x in first_visit_col_number:
if x == True:
exam_number = number
only_symptoms = symptom_first_visit.iloc[:,exam_number:]
columns_without_na = []
for coloums in range(0,len(only_symptoms.iloc[0,:])):
if not(all(only_symptoms.iloc[:,coloums].isna())):
columns_without_na.append(coloums)
only_symptoms_with_out_na = only_symptoms.iloc[:,columns_without_na]
columns_without_var = []
for coloums in range(0,len(only_symptoms_with_out_na.iloc[0,:])):
if (len(set(only_symptoms_with_out_na.iloc[:,coloums])) != 1):
columns_without_var.append(coloums)
only_symptoms_final = only_symptoms_with_out_na.iloc[:, columns_without_var]
only_symptoms_final["visit1_fir"][only_symptoms_final["visit1_fir"].isna()] = -1
only_symptoms_final["cog"][only_symptoms_final["cog"].isna()] = 0
try:
only_symptoms_final["apha"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["apha"].isna())] = -1
only_symptoms_final["apha"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["apha"].isna()))] = 0
only_symptoms_final["apha"][only_symptoms_final["apha"].isna()] = 0
only_symptoms_final["cogloss"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["cogloss"].isna())] = -1
only_symptoms_final["cogloss"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["cogloss"].isna()))] = 0
only_symptoms_final["cogloss"][only_symptoms_final["cogloss"].isna()] = 0
only_symptoms_final["eap"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["eap"].isna())] = -1
only_symptoms_final["eap"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["eap"].isna()))] = 0
only_symptoms_final["eap"][only_symptoms_final["eap"].isna()] = 0
only_symptoms_final["loc"][(only_symptoms_final["cogloss"] == 1) == (only_symptoms_final["eap"].isna())] = -1
only_symptoms_final["loc"][(list(only_symptoms_final["cogloss"] == 2)) and list((only_symptoms_final["eap"].isna()))] = 0
only_symptoms_final["loc"][only_symptoms_final["loc"].isna()] = 0
only_symptoms_final["ic"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["ic"].isna())] = -1
only_symptoms_final["ic"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["ic"].isna()))] = 0
only_symptoms_final["ic"][only_symptoms_final["ic"].isna()] = 0
only_symptoms_final["ii"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["ii"].isna())] = -1
only_symptoms_final["ii"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["ii"].isna()))] = 0
only_symptoms_final["ii"][only_symptoms_final["ii"].isna()] = 0
only_symptoms_final["fati"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["fati"].isna())] = -1
only_symptoms_final["fati"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["fati"].isna()))] = 0
only_symptoms_final["fati"][only_symptoms_final["fati"].isna()] = 0
only_symptoms_final["apr"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["apr"].isna())] = -1
only_symptoms_final["apr"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["apr"].isna()))] = 0
only_symptoms_final["apr"][only_symptoms_final["apr"].isna()] = 0
only_symptoms_final["red_consciousness_confus"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["red_consciousness_confus"].isna())] = -1
only_symptoms_final["red_consciousness_confus"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["red_consciousness_confus"].isna()))] = 0
only_symptoms_final["red_consciousness_confus"][only_symptoms_final["red_consciousness_confus"].isna()] = 0
only_symptoms_final["agnosia"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["agnosia"].isna())] = -1
only_symptoms_final["agnosia"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["agnosia"].isna()))] = 0
only_symptoms_final["agnosia"][only_symptoms_final["agnosia"].isna()] = 0
only_symptoms_final["psychosis"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["psychosis"].isna())] = -1
only_symptoms_final["psychosis"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["psychosis"].isna()))] = 0
only_symptoms_final["psychosis"][only_symptoms_final["psychosis"].isna()] = 0
only_symptoms_final["hallucinations_delusions"][(only_symptoms_final["cog"] == 1) == (only_symptoms_final["hallucinations_delusions"].isna())] = -1
only_symptoms_final["hallucinations_delusions"][(list(only_symptoms_final["cog"] == 2)) and list((only_symptoms_final["hallucinations_delusions"].isna()))] = 0
only_symptoms_final["hallucinations_delusions"][only_symptoms_final["hallucinations_delusions"].isna()] = 0
only_symptoms_final["sleep_disturbance"][only_symptoms_final["sleep_disturbance"].isna()] = -1
only_symptoms_final["mab"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["mab"].isna())] = -1
only_symptoms_final["mab"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["mab"].isna()))] = 0
only_symptoms_final["mab"][only_symptoms_final["mab"].isna()] = 0
only_symptoms_final["adh"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["adh"].isna())] = -1
only_symptoms_final["adh"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["adh"].isna()))] = 0
only_symptoms_final["adh"][only_symptoms_final["adh"].isna()] = 0
# only_symptoms_final["dbfb"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["dbfb"].isna())] = -1
# only_symptoms_final["dbfb"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["dbfb"].isna()))] = 0
# only_symptoms_final["dbfb"][only_symptoms_final["dbfb"].isna()] = 0
only_symptoms_final["depr"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["depr"].isna())] = -1
only_symptoms_final["depr"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["depr"].isna()))] = 0
only_symptoms_final["depr"][only_symptoms_final["depr"].isna()] = 0
only_symptoms_final["ma"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["ma"].isna())] = -1
only_symptoms_final["ma"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["ma"].isna()))] = 0
only_symptoms_final["ma"][only_symptoms_final["ma"].isna()] = 0
only_symptoms_final["personality"][(only_symptoms_final["mab"] == 1) == (only_symptoms_final["personality"].isna())] = -1
only_symptoms_final["personality"][(list(only_symptoms_final["mab"] == 2)) and list((only_symptoms_final["personality"].isna()))] = 0
only_symptoms_final["personality"][only_symptoms_final["personality"].isna()] = 0
only_symptoms_final["s_e"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["s_e"].isna())] = -1
only_symptoms_final["s_e"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["s_e"].isna()))] = 0
only_symptoms_final["s_e"][only_symptoms_final["s_e"].isna()] = 0
# only_symptoms_final["fs"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["fs"].isna())] = -1
# only_symptoms_final["fs"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["fs"].isna()))] = 0
# only_symptoms_final["fs"][only_symptoms_final["fs"].isna()] = 0
only_symptoms_final["fs___2"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["fs___2"].isna())] = -1
only_symptoms_final["fs___2"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["fs___2"].isna()))] = 0
only_symptoms_final["fs___2"][only_symptoms_final["fs___2"].isna()] = 0
# only_symptoms_final["gs"][(only_symptoms_final["s_e"] == 1) == (only_symptoms_final["gs"].isna())] = -1
# only_symptoms_final["gs"][(list(only_symptoms_final["s_e"] == 2)) and list((only_symptoms_final["gs"].isna()))] = 0
# only_symptoms_final["gs"][only_symptoms_final["gs"].isna()] = 0
only_symptoms_final["emd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["emd"].isna())] = -1
only_symptoms_final["emd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["emd"].isna()))] = 0
only_symptoms_final["emd"][only_symptoms_final["emd"].isna()] = 0
only_symptoms_final["diplopia"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["diplopia"].isna())] = -1
only_symptoms_final["diplopia"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["diplopia"].isna()))] = 0
only_symptoms_final["diplopia"][only_symptoms_final["diplopia"].isna()] = 0
only_symptoms_final["nys"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["nys"].isna())] = -1
only_symptoms_final["nys"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["nys"].isna()))] = 0
only_symptoms_final["nys"][only_symptoms_final["nys"].isna()] = 0
only_symptoms_final["ino"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["ino"].isna())] = -1
only_symptoms_final["ino"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["ino"].isna()))] = 0
only_symptoms_final["ino"][only_symptoms_final["ino"].isna()] = 0
only_symptoms_final["oculomot"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["oculomot"].isna())] = -1
only_symptoms_final["oculomot"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["oculomot"].isna()))] = 0
only_symptoms_final["oculomot"][only_symptoms_final["oculomot"].isna()] = 0
only_symptoms_final["fourth_cranial_nerve_palsy"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["fourth_cranial_nerve_palsy"].isna())] = -1
only_symptoms_final["fourth_cranial_nerve_palsy"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["fourth_cranial_nerve_palsy"].isna()))] = 0
only_symptoms_final["fourth_cranial_nerve_palsy"][only_symptoms_final["fourth_cranial_nerve_palsy"].isna()] = 0
only_symptoms_final["abducens"][(only_symptoms_final["emd"] == 1) == (only_symptoms_final["abducens"].isna())] = -1
only_symptoms_final["abducens"][(list(only_symptoms_final["emd"] == 2)) and list((only_symptoms_final["abducens"].isna()))] = 0
only_symptoms_final["abducens"][only_symptoms_final["ino"].isna()] = 0
only_symptoms_final["thy"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["thy"].isna())] = -1
only_symptoms_final["thy"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["thy"].isna()))] = 0
only_symptoms_final["thy"][only_symptoms_final["thy"].isna()] = 0
only_symptoms_final["fp"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["fp"].isna())] = -1
only_symptoms_final["fp"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["fp"].isna()))] = 0
only_symptoms_final["fp"][only_symptoms_final["fp"].isna()] = 0
only_symptoms_final["od"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["od"].isna())] = -1
only_symptoms_final["od"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["od"].isna()))] = 0
only_symptoms_final["od"][only_symptoms_final["od"].isna()] = 0
only_symptoms_final["hi"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["hi"].isna())] = -1
only_symptoms_final["hi"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["hi"].isna()))] = 0
only_symptoms_final["hi"][only_symptoms_final["hi"].isna()] = 0
only_symptoms_final["hp"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["hp"].isna())] = -1
only_symptoms_final["hp"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["hp"].isna()))] = 0
only_symptoms_final["hp"][only_symptoms_final["hp"].isna()] = 0
only_symptoms_final["trig_neur"][(only_symptoms_final["crn"] == 1) == (only_symptoms_final["trig_neur"].isna())] = -1
only_symptoms_final["trig_neur"][(list(only_symptoms_final["crn"] == 2)) and list((only_symptoms_final["trig_neur"].isna()))] = 0
only_symptoms_final["trig_neur"][only_symptoms_final["trig_neur"].isna()] = 0
only_symptoms_final["spsw"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["spsw"].isna())] = -1
only_symptoms_final["spsw"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["spsw"].isna()))] = 0
only_symptoms_final["spsw"][only_symptoms_final["spsw"].isna()] = 0
only_symptoms_final["dya"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["dya"].isna())] = -1
only_symptoms_final["dya"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["dya"].isna()))] = 0
only_symptoms_final["dya"][only_symptoms_final["dya"].isna()] = 0
only_symptoms_final["scs"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["scs"].isna())] = -1
only_symptoms_final["scs"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["scs"].isna()))] = 0
only_symptoms_final["scs"][only_symptoms_final["scs"].isna()] = 0
only_symptoms_final["dysphon"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["dysphon"].isna())] = -1
only_symptoms_final["dysphon"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["dysphon"].isna()))] = 0
only_symptoms_final["dysphon"][only_symptoms_final["dysphon"].isna()] = 0
only_symptoms_final["slurred_speech"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["slurred_speech"].isna())] = -1
only_symptoms_final["slurred_speech"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["slurred_speech"].isna()))] = 0
only_symptoms_final["slurred_speech"][only_symptoms_final["slurred_speech"].isna()] = 0
only_symptoms_final["bulbar_palsy"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["bulbar_palsy"].isna())] = -1
only_symptoms_final["bulbar_palsy"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["bulbar_palsy"].isna()))] = 0
only_symptoms_final["bulbar_palsy"][only_symptoms_final["bulbar_palsy"].isna()] = 0
only_symptoms_final["pseudobulbar_palsy"][(only_symptoms_final["spsw"] == 1) == (only_symptoms_final["pseudobulbar_palsy"].isna())] = -1
only_symptoms_final["pseudobulbar_palsy"][(list(only_symptoms_final["spsw"] == 2)) and list((only_symptoms_final["pseudobulbar_palsy"].isna()))] = 0
only_symptoms_final["pseudobulbar_palsy"][only_symptoms_final["pseudobulbar_palsy"].isna()] = 0
only_symptoms_final["dyp"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["dyp"].isna())] = -1
only_symptoms_final["dyp"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["dyp"].isna()))] = 0
only_symptoms_final["dyp"][only_symptoms_final["dyp"].isna()] = 0
only_symptoms_final["emp"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["emp"].isna())] = -1
only_symptoms_final["emp"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["emp"].isna()))] = 0
only_symptoms_final["emp"][only_symptoms_final["emp"].isna()] = 0
only_symptoms_final["var"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["var"].isna())] = -1
only_symptoms_final["var"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["var"].isna()))] = 0
only_symptoms_final["var"][only_symptoms_final["var"].isna()] = 0
only_symptoms_final["cvd"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["cvd"].isna())] = -1
only_symptoms_final["cvd"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["cvd"].isna()))] = 0
only_symptoms_final["cvd"][only_symptoms_final["cvd"].isna()] = 0
only_symptoms_final["cvi"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["cvi"].isna())] = -1
only_symptoms_final["cvi"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["cvi"].isna()))] = 0
only_symptoms_final["cvi"][only_symptoms_final["cvi"].isna()] = 0
# only_symptoms_final["visual_field_defect"][(only_symptoms_final["visi"] == 1) == (only_symptoms_final["visual_field_defect"].isna())] = -1
# only_symptoms_final["visual_field_defect"][(list(only_symptoms_final["visi"] == 2)) and list((only_symptoms_final["visual_field_defect"].isna()))] = 0
# only_symptoms_final["visual_field_defect"][only_symptoms_final["visual_field_defect"].isna()] = 0
only_symptoms_final["sim"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["sim"].isna())] = -1
only_symptoms_final["sim"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["sim"].isna()))] = 0
only_symptoms_final["sim"][only_symptoms_final["sim"].isna()] = 0
only_symptoms_final["sper"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["sper"].isna())] = -1
only_symptoms_final["sper"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["sper"].isna()))] = 0
only_symptoms_final["sper"][only_symptoms_final["sper"].isna()] = 0
only_symptoms_final["vs"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["vs"].isna())] = -1
only_symptoms_final["vs"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["vs"].isna()))] = 0
only_symptoms_final["vs"][only_symptoms_final["vs"].isna()] = 0
# only_symptoms_final["sensory_impa"][(only_symptoms_final["sim"] == 1) == (only_symptoms_final["sensory_impa"].isna())] = -1
# only_symptoms_final["sensory_impa"][(list(only_symptoms_final["sim"] == 2)) and list((only_symptoms_final["sensory_impa"].isna()))] = 0
# only_symptoms_final["sensory_impa"][only_symptoms_final["sensory_impa"].isna()] = 0
only_symptoms_final["cersy"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["cersy"].isna())] = -1
only_symptoms_final["cersy"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["cersy"].isna()))] = 0
only_symptoms_final["cersy"][only_symptoms_final["cersy"].isna()] = 0
only_symptoms_final["trem"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["trem"].isna())] = -1
only_symptoms_final["trem"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["trem"].isna()))] = 0
only_symptoms_final["trem"][only_symptoms_final["trem"].isna()] = 0
# only_symptoms_final["hye"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["hye"].isna())] = -1
# only_symptoms_final["hye"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["hye"].isna()))] = 0
# only_symptoms_final["hye"][only_symptoms_final["hye"].isna()] = 0
only_symptoms_final["hyo"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["hyo"].isna())] = -1
only_symptoms_final["hyo"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["hyo"].isna()))] = 0
only_symptoms_final["hyo"][only_symptoms_final["hyo"].isna()] = 0
only_symptoms_final["dyt"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["dyt"].isna())] = -1
only_symptoms_final["dyt"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["dyt"].isna()))] = 0
only_symptoms_final["dyt"][only_symptoms_final["dyt"].isna()] = 0
# only_symptoms_final["dyskin"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["dyskin"].isna())] = -1
# only_symptoms_final["dyskin"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["dyskin"].isna()))] = 0
# only_symptoms_final["dyskin"][only_symptoms_final["dyskin"].isna()] = 0
only_symptoms_final["fmd"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["fmd"].isna())] = -1
only_symptoms_final["fmd"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["fmd"].isna()))] = 0
only_symptoms_final["fmd"][only_symptoms_final["fmd"].isna()] = 0
only_symptoms_final["ataxia"][(only_symptoms_final["cersy"] == 1) == (only_symptoms_final["ataxia"].isna())] = -1
only_symptoms_final["ataxia"][(list(only_symptoms_final["cersy"] == 2)) and list((only_symptoms_final["ataxia"].isna()))] = 0
only_symptoms_final["ataxia"][only_symptoms_final["ataxia"].isna()] = 0
only_symptoms_final["bd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["bd"].isna())] = -1
only_symptoms_final["bd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["bd"].isna()))] = 0
only_symptoms_final["bd"][only_symptoms_final["bd"].isna()] = 0
only_symptoms_final["sexd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["sexd"].isna())] = -1
only_symptoms_final["sexd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["sexd"].isna()))] = 0
only_symptoms_final["sexd"][only_symptoms_final["sexd"].isna()] = 0
only_symptoms_final["edy"][(only_symptoms_final["sexd"] == 1) == (only_symptoms_final["edy"].isna())] = -1
only_symptoms_final["edy"][(list(only_symptoms_final["sexd"] == 2)) and list((only_symptoms_final["edy"].isna()))] = 0
only_symptoms_final["edy"][only_symptoms_final["edy"].isna()] = 0
only_symptoms_final["ll"][(only_symptoms_final["sexd"] == 1) == (only_symptoms_final["ll"].isna())] = -1
only_symptoms_final["ll"][(list(only_symptoms_final["sexd"] == 2)) and list((only_symptoms_final["ll"].isna()))] = 0
only_symptoms_final["ll"][only_symptoms_final["ll"].isna()] = 0
only_symptoms_final["bi"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["bi"].isna())] = -1
only_symptoms_final["bi"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["bi"].isna()))] = 0
only_symptoms_final["bi"][only_symptoms_final["bi"].isna()] = 0
only_symptoms_final["prs"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["prs"].isna())] = -1
only_symptoms_final["prs"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["prs"].isna()))] = 0
only_symptoms_final["prs"][only_symptoms_final["prs"].isna()] = 0
only_symptoms_final["tprs"][(only_symptoms_final["prs"] == 1) == (only_symptoms_final["tprs"].isna())] = -1
only_symptoms_final["tprs"][(list(only_symptoms_final["prs"] == 2)) and list((only_symptoms_final["tprs"].isna()))] = 0
only_symptoms_final["tprs"][only_symptoms_final["tprs"].isna()] = 0
only_symptoms_final["severity_of_paresis"][(only_symptoms_final["tprs"] == 1) == (only_symptoms_final["severity_of_paresis"].isna())] = -1
only_symptoms_final["severity_of_paresis"][(list(only_symptoms_final["tprs"] == 2)) and list((only_symptoms_final["severity_of_paresis"].isna()))] = 0
only_symptoms_final["severity_of_paresis"][only_symptoms_final["severity_of_paresis"].isna()] = 0
only_symptoms_final["psi"][(only_symptoms_final["prs"] == 1) == (only_symptoms_final["psi"].isna())] = -1
only_symptoms_final["psi"][(list(only_symptoms_final["prs"] == 2)) and list((only_symptoms_final["psi"].isna()))] = 0
only_symptoms_final["psi"][only_symptoms_final["psi"].isna()] = 0
only_symptoms_final["spas"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["spas"].isna())] = -1
only_symptoms_final["spas"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["spas"].isna()))] = 0
only_symptoms_final["spas"][only_symptoms_final["spas"].isna()] = 0
only_symptoms_final["tspas"][(only_symptoms_final["spas"] == 1) == (only_symptoms_final["tspas"].isna())] = -1
only_symptoms_final["tspas"][(list(only_symptoms_final["spas"] == 2)) and list((only_symptoms_final["tspas"].isna()))] = 0
only_symptoms_final["tspas"][only_symptoms_final["tspas"].isna()] = 0
# only_symptoms_final["pai"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["pai"].isna())] = -1
# only_symptoms_final["pai"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["pai"].isna()))] = 0
# only_symptoms_final["pai"][only_symptoms_final["pai"].isna()] = 0
#
# only_symptoms_final["npa"][(only_symptoms_final["pai"] == 1) == (only_symptoms_final["npa"].isna())] = -1
# only_symptoms_final["npa"][(list(only_symptoms_final["pai"] == 2)) and list((only_symptoms_final["npa"].isna()))] = 0
# only_symptoms_final["npa"][only_symptoms_final["npa"].isna()] = 0
# only_symptoms_final["headache"][(only_symptoms_final["pai"] == 1) == (only_symptoms_final["headache"].isna())] = -1
# only_symptoms_final["headache"][(list(only_symptoms_final["pai"] == 2)) and list((only_symptoms_final["headache"].isna()))] = 0
# only_symptoms_final["headache"][only_symptoms_final["headache"].isna()] = 0
only_symptoms_final["vertigo_dizziness"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["vertigo_dizziness"].isna())] = -1
only_symptoms_final["vertigo_dizziness"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["vertigo_dizziness"].isna()))] = 0
only_symptoms_final["vertigo_dizziness"][only_symptoms_final["vertigo_dizziness"].isna()] = 0
only_symptoms_final["type_of_dizziness"][(only_symptoms_final["vertigo_dizziness"] == 1) == (only_symptoms_final["type_of_dizziness"].isna())] = -1
only_symptoms_final["type_of_dizziness"][(list(only_symptoms_final["vertigo_dizziness"] == 2)) and list((only_symptoms_final["type_of_dizziness"].isna()))] = 0
only_symptoms_final["type_of_dizziness"][only_symptoms_final["type_of_dizziness"].isna()] = 0
only_symptoms_final["gdis"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["gdis"].isna())] = -1
only_symptoms_final["gdis"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["gdis"].isna()))] = 0
only_symptoms_final["gdis"][only_symptoms_final["gdis"].isna()] = 0
# only_symptoms_final["gait_imbalance"][(only_symptoms_final["gdis"] == 1) == (only_symptoms_final["gait_imbalance"].isna())] = -1
# only_symptoms_final["gait_imbalance"][(list(only_symptoms_final["gdis"] == 2)) and list((only_symptoms_final["gait_imbalance"].isna()))] = 0
# only_symptoms_final["gait_imbalance"][only_symptoms_final["gait_imbalance"].isna()] = 0
only_symptoms_final["exgdis"][(only_symptoms_final["gdis"] == 1) == (only_symptoms_final["exgdis"].isna())] = -1
only_symptoms_final["exgdis"][(list(only_symptoms_final["gdis"] == 2)) and list((only_symptoms_final["exgdis"].isna()))] = 0
only_symptoms_final["exgdis"][only_symptoms_final["exgdis"].isna()] = 0
only_symptoms_final["nnsym"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["nnsym"].isna())] = -1
only_symptoms_final["nnsym"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["nnsym"].isna()))] = 0
only_symptoms_final["nnsym"][only_symptoms_final["nnsym"].isna()] = 0
only_symptoms_final["addd"][(only_symptoms_final["nnsym"] == 1) == (only_symptoms_final["addd"].isna())] = -1
only_symptoms_final["addd"][(list(only_symptoms_final["nnsym"] == 2)) and list((only_symptoms_final["addd"].isna()))] = 0
only_symptoms_final["addd"][only_symptoms_final["addd"].isna()] = 0
only_symptoms_final["hypogon"][(only_symptoms_final["nnsym"] == 1) == (only_symptoms_final["hypogon"].isna())] = -1
only_symptoms_final["hypogon"][(list(only_symptoms_final["nnsym"] == 2)) and list((only_symptoms_final["hypogon"].isna()))] = 0
only_symptoms_final["hypogon"][only_symptoms_final["hypogon"].isna()] = 0
only_symptoms_final["pd"][(only_symptoms_final["visit1_fir"] == 1) == (only_symptoms_final["pd"].isna())] = -1
only_symptoms_final["pd"][(list(only_symptoms_final["visit1_fir"] == 2)) and list((only_symptoms_final["pd"].isna()))] = 0
only_symptoms_final["pd"][only_symptoms_final["pd"].isna()] = 0
except: print("Block entry doesnt work")
only_symptoms_final.drop(columns="visit1_fir",axis=1)
only_symptoms_final.drop(columns="examination_data_use_new_sheet_for_every_visit_complete",axis=1)
only_symptoms_final.insert(loc=0, column='label', value=labels)
print("Data preparation is complete")
#def quarter(x):
# return math.ceil(x*4)/4
""" def ANN(x,y,xt,yt): size = len(x) ########################################## #x = sklearn.preprocessing.normalize(x, norm="l1") #xt = sklearn.preprocessing.normalize([xt], norm="l1") #scaler_x = MinMaxScaler(feature_range=(0, 1)) #x = pd. DataFrame(scaler_x.fit_transform(x)) #xt = pd. DataFrame(scaler_x.fit_transform([xt])) #scaler_y = MinMaxScaler(feature_range=(0, 1)) #y = pd. DataFrame(scaler_y.fit_transform([y])) #yt = pd. DataFrame(scaler_y.fit_transform([[yt]])) maxmin=[] for i in range(0,100): maxmin.append([0, 1]) ########################################## inp = x#.reshape(size,1) tar = y.reshape(size,1) # Create network with 2 layers and random initialized net = nl.net.newff(maxmin,[20, 1]) # Train network error = net.train(inp, tar, epochs=5000, show=100, goal=0.01) # Simulate network out = net.sim(inp) # Plot result #pl.subplot(211) #pl.plot(error) #pl.xlabel('Epoch number') #pl.ylabel('error (default SSE)') #x2 = xt#np.linspace(-6.0,6.0,150) ytt = net.sim([xt]) return ytt ytt=np.round(ytt) yttn=[] for item in ytt: if item[0]==0: yttn.append(0) else: yttn.append(1) return len([a for a in np.isclose(yttn , yt) if(a)]) / len(yttn) * 100 """
imputer = MissForest(missing_values=-1)
data_real = only_symptoms_final
#del data_real[data_real.columns[0]]
data_imputed = imputer.fit_transform(data_real)
data = pd.DataFrame(data=data_imputed, columns=data_real.columns.values.tolist())
print("Data imputation is complete")
#data = pd.read_csv('./output.csv')
# normalize dataset with MinMaxScaler
#scaler = MinMaxScaler(feature_range=(-1, 1))
#data = pd.DataFrame(scaler.fit_transform(realData))
linear_result=[]
rbf_result=[]
poly_result=[]
sig_result=[]
for testIndex in range( len(data)): #data_temp=data #train=data.drop([testIndex]) #test=data.iloc[testIndex]
data_x = data.iloc[:, 1:]
y = data.iloc[:, 0]
#y_class1=y
""""" y_class1=y.replace(2,1) y_class1=y_class1.replace(103,0) y_class1=y_class1.replace(7,0) y_class1=y_class1.replace(84,0) y_class2=y.replace(2,0) y_class2=y_class2.replace(103,1) y_class2=y_class2.replace(7,0) y_class2=y_class2.replace(84,0) """
# 2, 84 and 103 realted to LD
y_class=y.replace(2,0)
y_class=y_class.replace(103,0)
y_class=y_class.replace(1,0)
y_class=y_class.replace(84,1)
# 7 is related to MS
y_class=y_class.replace(7,0)
y_class=y_class.replace(29,0)
y_class=y_class.replace(60,0)
""""" y_class4=y.replace(2,0) y_class4=y_class4.replace(103,0) y_class4=y_class4.replace(7,0) y_class4=y_class4.replace(84,1) """
sc = StandardScaler()
x_scaled =pd.DataFrame( sc.fit_transform(data_x.values))
xt_scaled=x_scaled.iloc[testIndex]
x_scaled=x_scaled.drop([testIndex])
#y_class1=y_class1.drop([testIndex])
#y_class2=y_class2.drop([testIndex])
y_class=y_class.drop([testIndex])
#y_class4=y_class4.drop([testIndex])
yt=data.iloc[testIndex].iloc[ 1]
#y_class1= np.ravel(y_class1)
#y_class2= np.ravel(y_class2)
y_class= np.ravel(y_class)
#y_class4= np.ravel(y_class4)
#svm_class1 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
#svm_class2 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
svm_class_sigmoid = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_linear = SVC(kernel='linear', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_poly = SVC(kernel='poly', C=1, decision_function_shape='ovo', random_state=0,probability=True)
svm_class_rbf= SVC(kernel='rbf', C=1, decision_function_shape='ovo', random_state=0,probability=True)
#svm_class4 = SVC(kernel='sigmoid', C=1, decision_function_shape='ovo', random_state=0)
#svm_class1.fit(x_scaled, y_class1)
#svm_class2.fit(x_scaled, y_class2)
svm_class_sigmoid.fit(x_scaled, y_class)
svm_class_linear.fit(x_scaled, y_class)
svm_class_poly.fit(x_scaled, y_class)
svm_class_rbf.fit(x_scaled, y_class)
#svm_class4.fit(x_scaled, y_class4)
#y_pre_class1 = svm_class1.predict([xt_scaled])
#y_pre_class2 = svm_class2.predict([xt_scaled])
y_pre_class_sigmoid = svm_class_sigmoid.predict([xt_scaled])
y_pre_class_linear = svm_class_linear.predict([xt_scaled])
y_pre_class_poly = svm_class_poly.predict([xt_scaled])
y_pre_class_rbf = svm_class_rbf.predict([xt_scaled])
#y_pre_class4 = svm_class4.predict([xt_scaled])
#linear = svm.SVC(kernel='linear', C=1, decision_function_shape='ovo').fit(x, y)
#rbf = svm.SVC(kernel='rbf', gamma=1, C=1, decision_function_shape='ovo').fit(x, y)
#poly = svm.SVC(kernel='poly', degree=3, C=1, decision_function_shape='ovo').fit(x, y)
#sig = svm.SVC(kernel='sigmoid', C=1, decision_function_shape='ovo').fit(x, y)
#linear_result.append([linear.predict([xt])[0],yt])
if y_pre_class_sigmoid[0]==1:
sig_result.append([84,yt])
else:
sig_result.append([0,yt])
if y_pre_class_linear[0]==1:
linear_result.append([84,yt])
linear_result.append([0,yt])
if y_pre_class_poly[0]==1:
poly_result.append([84,yt])
poly_result.append([0,yt])
if y_pre_class_rbf[0]==1:
rbf_result.append([84,yt])
rbf_result.append([0,yt])
# if y_pre_class1[0]==0 and y_pre_class2[0]==1 and y_pre_class3[0]==0 and y_pre_class4[0]==0:
# SVM_result.append([103,yt])
# else:
# if y_pre_class1[0]==0 and y_pre_class2[0]==0 and y_pre_class3[0]==1 and y_pre_class4[0]==0:
# SVM_result.append([7,yt])
# else:
# if y_pre_class1[0]==0 and y_pre_class2[0]==0 and y_pre_class3[0]==0 and y_pre_class4[0]==1:
# SVM_result.append([84,yt])
# else:
# SVM_result.append([0,yt])
#poly_result.append([poly.predict([xt])[0],yt])
#sig_result.append([sig.predict([xt])[0],yt])
#Percent_SVM=0
#Percent_poly=0
#Percent_ANN=0
pd.DataFrame(linear_result).to_csv('binary_linear.csv')
pd.DataFrame(rbf_result).to_csv('binary_rbf.csv')
pd.DataFrame(poly_result).to_csv('binary_poly.csv')
pd.DataFrame(sig_result).to_csv('binary_sig.csv')
Percent_linear=0
Percent_poly=0
Percent_rbf=0
Percent_sig=0
for index in range(len(data)):
if linear_result[index][0]!=linear_result[index][1]:
Percent_linear=Percent_linear+1
if rbf_result[index][0]!=rbf_result[index][1]:
Percent_rbf=Percent_rbf+1
if poly_result[index][0]!=poly_result[index][1]:
Percent_poly=Percent_poly+1
Percent_sig=Percent_sig+1
Percent_linear=Percent_linear/len(data)
Percent_poly=Percent_poly/len(data)
Percent_rbf=Percent_rbf/len(data)
Percent_sig=Percent_sig/len(data)
print(Percent_linear)
print(Percent_poly)
print(Percent_rbf)
print(Percent_sig)
print("Model is finish")
print("SUCCESS")
""""" data=pd.DataFrame( data[data.iloc[:, 1]!=84].values) linear_result=[] rbf_result=[] poly_result=[] sig_result=[] #for index in range(len(data)): # if SVM_result[index][84]==SVM_result[index][1]:Percent_SVM=Percent_SVM+1 for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] linear = svm.SVC(kernel='linear', C=1, decision_function_shape='ovo').fit(x, y) rbf = svm.SVC(kernel='rbf', gamma=1, C=1, decision_function_shape='ovo').fit(x, y) poly = svm.SVC(kernel='poly', degree=3, C=1, decision_function_shape='ovo').fit(x, y) sig = svm.SVC(kernel='sigmoid', C=1, decision_function_shape='ovo').fit(x, y) linear_result.append([linear.predict([xt])[0],yt]) rbf_result.append([rbf.predict([xt])[0],yt]) poly_result.append([poly.predict([xt])[0],yt]) sig_result.append([sig.predict([xt])[0],yt]) pd.DataFrame(linear_result).to_csv('multi_class_linear.csv') pd.DataFrame(rbf_result).to_csv('multi_class_rbf.csv') pd.DataFrame(poly_result).to_csv('multi_class_poly.csv') pd.DataFrame(sig_result).to_csv('multi_class_sig.csv') Percent_linear=Percent_SVM/len(data) data.iloc[:,1]=data.iloc[:,1].replace(2,0) data.iloc[:,1]=data.iloc[:,1].replace(103,0.25) data.iloc[:,1]=data.iloc[:,1].replace(7,0.75) data.iloc[:,1]=data.iloc[:,1].replace(84,1) scaler = MinMaxScaler(feature_range=(0, 1)) data = pd.DataFrame(scaler.fit_transform(data)) ANN_result=[] for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] pyt= quarter(ANN(x,y,xt,yt)) ANN_result.append([pyt,yt]) Percent_linear=0 Percent_poly=0 Percent_ANN=0 for index in range(len(data)): if linear_result[index][0]==linear_result[index][1]:Percent_linear=Percent_linear+1 if poly_result[index][0]==poly_result[index][1]:Percent_poly=Percent_poly+1 if ANN_result[index][0]==ANN_result[index][1]:Percent_ANN=Percent_ANN+1 Percent_linear=Percent_linear/len(data) Percent_poly=Percent_poly/len(data) Percent_ANN=Percent_ANN/len(data) #2 103 7 84 class1=data.drop(np.where(data.iloc[:,1] != 2)[0]) class2=data.drop(np.where(data.iloc[:,1] != 103)[0]) class3=data.drop(np.where(data.iloc[:,1] != 7)[0]) class4=data.drop(np.where(data.iloc[:,1] != 84)[0]) """
Search
Train Selection