Code fragment metadata

hasIdentifier: https://padme-analytics.de/pht/codeFragment/c27f84d15d216fd0188ac53e206c3f54dc22a6602a3019474fd016b9aee05f16
hasContent: """"" data=pd.DataFrame( data[data.iloc[:, 1]!=84].values) linear_result=[] rbf_result=[] poly_result=[] sig_result=[] #for index in range(len(data)): # if SVM_result[index][84]==SVM_result[index][1]:Percent_SVM=Percent_SVM+1 for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] linear = svm.SVC(kernel='linear', C=1, decision_function_shape='ovo').fit(x, y) rbf = svm.SVC(kernel='rbf', gamma=1, C=1, decision_function_shape='ovo').fit(x, y) poly = svm.SVC(kernel='poly', degree=3, C=1, decision_function_shape='ovo').fit(x, y) sig = svm.SVC(kernel='sigmoid', C=1, decision_function_shape='ovo').fit(x, y) linear_result.append([linear.predict([xt])[0],yt]) rbf_result.append([rbf.predict([xt])[0],yt]) poly_result.append([poly.predict([xt])[0],yt]) sig_result.append([sig.predict([xt])[0],yt]) pd.DataFrame(linear_result).to_csv('multi_class_linear.csv') pd.DataFrame(rbf_result).to_csv('multi_class_rbf.csv') pd.DataFrame(poly_result).to_csv('multi_class_poly.csv') pd.DataFrame(sig_result).to_csv('multi_class_sig.csv') Percent_linear=Percent_SVM/len(data) data.iloc[:,1]=data.iloc[:,1].replace(2,0) data.iloc[:,1]=data.iloc[:,1].replace(103,0.25) data.iloc[:,1]=data.iloc[:,1].replace(7,0.75) data.iloc[:,1]=data.iloc[:,1].replace(84,1) scaler = MinMaxScaler(feature_range=(0, 1)) data = pd.DataFrame(scaler.fit_transform(data)) ANN_result=[] for testIndex in range( len(data)): train=data.drop([testIndex]) test=data.iloc[testIndex] x = train.iloc[:, 2:].values y = train.iloc[:, 1].values xt = test.iloc[ 2:].values yt = test.iloc[ 1] pyt= quarter(ANN(x,y,xt,yt)) ANN_result.append([pyt,yt]) Percent_linear=0 Percent_poly=0 Percent_ANN=0 for index in range(len(data)): if linear_result[index][0]==linear_result[index][1]:Percent_linear=Percent_linear+1 if poly_result[index][0]==poly_result[index][1]:Percent_poly=Percent_poly+1 if ANN_result[index][0]==ANN_result[index][1]:Percent_ANN=Percent_ANN+1 Percent_linear=Percent_linear/len(data) Percent_poly=Percent_poly/len(data) Percent_ANN=Percent_ANN/len(data) #2 103 7 84 class1=data.drop(np.where(data.iloc[:,1] != 2)[0]) class2=data.drop(np.where(data.iloc[:,1] != 103)[0]) class3=data.drop(np.where(data.iloc[:,1] != 7)[0]) class4=data.drop(np.where(data.iloc[:,1] != 84)[0]) """

Code fragment is used in the following Trains