Code fragment metadata

hasIdentifier: https://padme-analytics.de/pht/codeFragment/7b5344bbd991687663df4d90eb7dd01df587fdc0f445c0093c6d2e3e8e3b62d8
hasContent: """ def ANN(x,y,xt,yt): size = len(x) ########################################## #x = sklearn.preprocessing.normalize(x, norm="l1") #xt = sklearn.preprocessing.normalize([xt], norm="l1") #scaler_x = MinMaxScaler(feature_range=(0, 1)) #x = pd. DataFrame(scaler_x.fit_transform(x)) #xt = pd. DataFrame(scaler_x.fit_transform([xt])) #scaler_y = MinMaxScaler(feature_range=(0, 1)) #y = pd. DataFrame(scaler_y.fit_transform([y])) #yt = pd. DataFrame(scaler_y.fit_transform([[yt]])) maxmin=[] for i in range(0,100): maxmin.append([0, 1]) ########################################## inp = x#.reshape(size,1) tar = y.reshape(size,1) # Create network with 2 layers and random initialized net = nl.net.newff(maxmin,[20, 1]) # Train network error = net.train(inp, tar, epochs=5000, show=100, goal=0.01) # Simulate network out = net.sim(inp) # Plot result #pl.subplot(211) #pl.plot(error) #pl.xlabel('Epoch number') #pl.ylabel('error (default SSE)') #x2 = xt#np.linspace(-6.0,6.0,150) ytt = net.sim([xt]) return ytt ytt=np.round(ytt) yttn=[] for item in ytt: if item[0]==0: yttn.append(0) else: yttn.append(1) return len([a for a in np.isclose(yttn , yt) if(a)]) / len(yttn) * 100 """

Code fragment is used in the following Trains