PADME Train Wiki
Train Selection
Search
Trains
Metrics_CSV
421
generate_csv.py
Code fragments of generate_csv.py
import math
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
epochs = 50
metrics = ["acc", "recall", "precision", "f1-score", "run time"]
data = []
for m in metrics:
if m == "run time":
in_array = np.linspace(1, epochs, epochs)
mu, sigma = 5, 0.2
data.append(np.random.normal(mu, sigma, in_array.shape))
else:
in_array = np.linspace(1, epochs, epochs)
out_array = []
mu, sigma = 0, 0.01
s = np.random.normal(mu, sigma, in_array.shape)
for i in range(len(in_array)):
out_array.append(math.tanh(in_array[i])+s[i])
i += 1
data.append(out_array)
# print("Input_Array : \n", in_array)
# print("\nOutput_Array : \n", out_array)
# plt.plot(in_array, out_array, "go-")
# plt.xlabel("X")
# plt.ylabel("Y")
# plt.show()
data = pd.DataFrame(np.array(data).T, columns=metrics)
data.to_csv("./performance.csv", index=False)
Graph
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
generate_csv.py
import math
None
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
epochs = 50
metrics = ["acc", "recall", "precision", "f1-score", "run time"]
data = []
for m in metrics:
if m == "run time":
in_array = np.linspace(1, epochs, epochs)
mu, sigma = 5, 0.2
data.append(np.random.normal(mu, sigma, in_array.shape))
else:
out_array = []
mu, sigma = 0, 0.01
s = np.random.normal(mu, sigma, in_array.shape)
for i in range(len(in_array)):
out_array.append(math.tanh(in_array[i])+s[i])
i += 1
data.append(out_array)
# print("Input_Array : \n", in_array)
# print("\nOutput_Array : \n", out_array)
# plt.plot(in_array, out_array, "go-")
# plt.xlabel("X")
# plt.ylabel("Y")
# plt.show()
data = pd.DataFrame(np.array(data).T, columns=metrics)
data.to_csv("./performance.csv", index=False)
Search
Train Selection