Code fragments of generate_csv.py

Graph

undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedgenerate_csv.py import math None import numpy as np import pandas as pd # import matplotlib.pyplot as plt epochs = 50 metrics = ["acc", "recall", "precision", "f1-score", "run time"] data = [] for m in metrics: if m == "run time": in_array = np.linspace(1, epochs, epochs) mu, sigma = 5, 0.2 data.append(np.random.normal(mu, sigma, in_array.shape)) else: out_array = [] mu, sigma = 0, 0.01 s = np.random.normal(mu, sigma, in_array.shape) for i in range(len(in_array)): out_array.append(math.tanh(in_array[i])+s[i]) i += 1 data.append(out_array) # print("Input_Array : \n", in_array) # print("\nOutput_Array : \n", out_array) # plt.plot(in_array, out_array, "go-") # plt.xlabel("X") # plt.ylabel("Y") # plt.show() data = pd.DataFrame(np.array(data).T, columns=metrics) data.to_csv("./performance.csv", index=False)