PADME Train Wiki
Train Selection
Search
Trains
IncrementalLinearRegressionPythonTrain
421
initTrain.py
Code fragments of initTrain.py
import pickle
import numpy as np
numberPoints = 100
splitIndex = 50
#splitIndex = randrange(1, numberPoints)
print(str(splitIndex))
rng = np.random.RandomState()
x = 10 * rng.rand(numberPoints)
y = 0.4 * x - 5 + rng.randn(numberPoints)
with open('input1X.txt', 'wb') as fp:
pickle.dump(x[:splitIndex], fp)
with open('input1Y.txt', 'wb') as fp:
pickle.dump(y[:splitIndex], fp)
with open('input2X.txt', 'wb') as fp:
pickle.dump(x[splitIndex:], fp)
with open('input2Y.txt', 'wb') as fp:
pickle.dump(y[splitIndex:], fp)
from sklearn.linear_model import LinearRegression, SGDRegressor
filename = 'model.sav'
model = SGDRegressor()
pickle.dump(model, open(filename, 'wb'))
Graph
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
initTrain.py
import pickle
None
import numpy as np
numberPoints = 100
splitIndex = 50
#splitIndex = randrange(1, numberPoints)
print(str(splitIndex))
rng = np.random.RandomState()
x = 10 * rng.rand(numberPoints)
y = 0.4 * x - 5 + rng.randn(numberPoints)
with open('input1X.txt', 'wb') as fp:
pickle.dump(x[:splitIndex], fp)
with open('input1Y.txt', 'wb') as fp:
pickle.dump(y[:splitIndex], fp)
with open('input2X.txt', 'wb') as fp:
pickle.dump(x[splitIndex:], fp)
with open('input2Y.txt', 'wb') as fp:
pickle.dump(y[splitIndex:], fp)
from sklearn.linear_model import LinearRegression, SGDRegressor
filename = 'model.sav'
model = SGDRegressor()
pickle.dump(model, open(filename, 'wb'))
Search
Train Selection