PADME Train Wiki
Train Selection
Search
Trains
Breast_Cancer_Usecase_Pre_Train_PC
421
main.py
Code fragments of main.py
import os
import os.path as osp
import padme_conductor as pc
from fhirpy import SyncFHIRClient
from padme_conductor import Query
from padme_conductor.Plugins.FHIR import FHIRClient
def analysis(resources): # Search for Resource
output = ""
for items in resources:
count = 0
for _ in items:
count = count + 1
output += "Number of '{}': {} \n".format(resource, count)
pc.log("Number of '{}': {}".format(resource, count))
pc.log("Done")
return output
## Define (input) variables from Docker Container environment variables
env = pc.get_environment_vars(["FHIR_SERVER", "FHIR_PORT"])
fhir_server = env["FHIR_SERVER"]
fhir_port = env["FHIR_PORT"]
# Create an instance
fhir_plugin = FHIRClient(f"http://{fhir_server}:{fhir_port}/fhir")
resources = ["Patient", "Condition", "Observation", "Specimen"]
q_results = []
for resource in resources:
result = pc.query(Query(lambda client: client.resources(resource), fhir_plugin))
q_results.append(result)
# Execute the analysis
result = pc.execute_analysis(analysis, q_results)
# Save the Result to the train
pc.save(result, "report.txt", append=True)
Graph
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
main.py
import os
None
import os.path as osp
import padme_conductor as pc
from fhirpy import SyncFHIRClient
from padme_conductor import Query
from padme_conductor.Plugins.FHIR import FHIRClient
def analysis(resources): # Search for Resource
output = ""
for items in resources:
count = 0
for _ in items:
count = count + 1
output += "Number of '{}': {} \n".format(resource, count)
pc.log("Number of '{}': {}".format(resource, count))
logging
pc.log("Done")
return output
## Define (input) variables from Docker Container environment variables
env = pc.get_environment_vars(["FHIR_SERVER", "FHIR_PORT"])
stationParameters
fhir_server = env["FHIR_SERVER"]
fhir_port = env["FHIR_PORT"]
# Create an instance
fhir_plugin = FHIRClient(f"http://{fhir_server}:{fhir_port}/fhir")
resources = ["Patient", "Condition", "Observation", "Specimen"]
q_results = []
for resource in resources:
result = pc.query(Query(lambda client: client.resources(resource), fhir_plugin))
queryDatabase
q_results.append(result)
# Execute the analysis
result = pc.execute_analysis(analysis, q_results)
executeAnalysis
# Save the Result to the train
pc.save(result, "report.txt", append=True)
saveResult
Search
Train Selection