PADME Train Wiki
Train Selection
Search
Trains
Bind_Mount_Test
421
main.py
Code fragments of main.py
import io
import os
import uuid
import numpy as np
import pandas as pd
input_dir = os.environ.get("INPUT_DIR", "/home/data")
input_file = os.environ.get("INPUT_FILE", "data.csv")
output_dir = os.environ.get("OUTPUT_DIR", "/home/data")
output_dir_2 = os.environ.get("OUTPUT_DIR_2", "/home/results")
csv_name = os.environ.get("OUTPUT_FILE", "{}.csv".format(str(uuid.uuid4())))
buffer = io.StringIO()
input = pd.read_csv(os.path.join(input_dir, input_file))
input.info(buf=buffer)
s = buffer.getvalue()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "df_info.txt"), "w", encoding="utf-8") as f:
f.write(s)
if not os.path.exists(output_dir_2):
os.makedirs(output_dir_2)
df = pd.DataFrame(np.random.randint( 0, 100, size=(10, 4)), columns=list('ABCD'))
df.to_csv(os.path.join(output_dir_2, csv_name), index=False)
Graph
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
main.py
import io
None
import os
import uuid
import numpy as np
import pandas as pd
input_dir = os.environ.get("INPUT_DIR", "/home/data")
input_file = os.environ.get("INPUT_FILE", "data.csv")
output_dir = os.environ.get("OUTPUT_DIR", "/home/data")
output_dir_2 = os.environ.get("OUTPUT_DIR_2", "/home/results")
csv_name = os.environ.get("OUTPUT_FILE", "{}.csv".format(str(uuid.uuid4())))
buffer = io.StringIO()
input = pd.read_csv(os.path.join(input_dir, input_file))
input.info(buf=buffer)
s = buffer.getvalue()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "df_info.txt"), "w", encoding="utf-8") as f:
f.write(s)
if not os.path.exists(output_dir_2):
os.makedirs(output_dir_2)
df = pd.DataFrame(np.random.randint( 0, 100, size=(10, 4)), columns=list('ABCD'))
df.to_csv(os.path.join(output_dir_2, csv_name), index=False)
Search
Train Selection