PADME Train Wiki
  • Train Selection
  • Trains
  • AnonymizationTestTrain
  • 431
  • csv_file_gen_main.py

Code fragments of csv_file_gen_main.py

  • import pandas as pd
  • from random import randrange
  • import os
  • if __name__ == "__main__": # check if environment variable is set
  • folders = ["ADULT", "CARDIO", "STROKE"]
  • if os.getenv('dataset') in folders:
  • selected_folders = [os.getenv('dataset')]
  • else:
  • selected_folder = folders[randrange(len(folders)-1)]
  • df = pd.read_csv('./' + selected_folder + '/' + str(randrange(5))+ '.csv')
  • ndf = df.sample(frac = 0.2)
  • ndf.to_csv(selected_folder + '.csv', mode='a', header=not os.path.exists(selected_folder + '.csv'))
  • print('Done')

Graph

undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedcsv_file_gen_main.py import pandas as pd None from random import randrange import os if __name__ == "__main__": # check if environment variable is set folders = ["ADULT", "CARDIO", "STROKE"] if os.getenv('dataset') in folders: selected_folders = [os.getenv('dataset')] else: selected_folder = folders[randrange(len(folders)-1)] df = pd.read_csv('./' + selected_folder + '/' + str(randrange(5))+ '.csv') ndf = df.sample(frac = 0.2) ndf.to_csv(selected_folder + '.csv', mode='a', header=not os.path.exists(selected_folder + '.csv')) print('Done')
  • Train Selection